Connectivity-based segmentation of human amygdala nuclei using probabilistic tractography

نویسندگان

  • Zeynep M. Saygin
  • David E. Osher
  • Jean Augustinack
  • Bruce Fischl
  • John D. E. Gabrieli
چکیده

The amygdala plays an important role in emotional and social functions, and amygdala dysfunction has been associated with multiple neuropsychiatric disorders, including autism, anxiety, and depression. Although the amygdala is composed of multiple anatomically and functionally distinct nuclei, typical structural magnetic resonance imaging (MRI) sequences are unable to discern them. Thus, functional MRI (fMRI) studies typically average the BOLD response over the entire structure, which reveals some aspects of amygdala function as a whole but does not distinguish the separate roles of specific nuclei in humans. We developed a method to segment the human amygdala into its four major nuclei using only diffusion-weighted imaging and connectivity patterns derived mainly from animal studies. We refer to this new method as Tractography-based Segmentation, or TractSeg. The segmentations derived from TractSeg were topographically similar to their corresponding amygdaloid nuclei, and were validated against a high-resolution scan in which the nucleic boundaries were visible. In addition, nuclei topography was consistent across subjects. TractSeg relies on short scan acquisitions and widely accessible software packages, making it attractive for use in healthy populations to explore normal amygdala nucleus function, as well as in clinical and pediatric populations. Finally, it paves the way for implementing this method in other anatomical regions which are also composed of functional subunits that are difficult to distinguish with standard structural MRI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo

Structural alterations in long-range amygdala connections are proposed to crucially underlie several neuropsychiatric disorders. While progress has been made in elucidating the function of these connections, our understanding of their structure in humans remains sparse and non-systematic. Harnessing diffusion-weighted imaging and probabilistic tractography in humans, we investigate connections ...

متن کامل

Deep and superficial amygdala nuclei projections revealed in vivo by probabilistic tractography.

Despite a homogenous macroscopic appearance on magnetic resonance images, subregions of the amygdala express distinct functional profiles as well as corresponding differences in connectivity. In particular, histological analysis shows stronger connections for superficial (i.e., centromedial and cortical), compared with deep (i.e., basolateral and other), amygdala nuclei to lateral orbitofrontal...

متن کامل

Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus.

Parcellation of the human thalamus based on cortical connectivity information inferred from non-invasive diffusion-weighted images identifies sub-regions that we have proposed correspond to nuclei. Here we test the functional and anatomical validity of this proposal by comparing data from diffusion tractography, cytoarchitecture and functional imaging. We acquired diffusion imaging data in elev...

متن کامل

Amygdala subnuclei connectivity in response to violence reveals unique influences of individual differences in psychopathic traits in a nonforensic sample.

Atypical amygdala function and connectivity have reliably been associated with psychopathy. However, the amygdala is not a unitary structure. To examine how psychopathic traits in a nonforensic sample are linked to amygdala response to violence, this study used probabilistic tractography to classify amygdala subnuclei based on anatomical projections to and from amygdala subnuclei in a group of ...

متن کامل

Combining shape and connectivity analysis: An MRI study of thalamic degeneration in Alzheimer's disease

Alzheimer's disease (AD) is associated with neuronal loss not only in the hippocampus and amygdala but also in the thalamus. Anterodorsal, centromedial, and pulvinar nuclei are the main sites of degeneration in AD. Here we combined shape analysis and diffusion tensor imaging (DTI) tractography to study degeneration in AD in the thalamus and its connections. Structural and diffusion tensor MRI s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 56 3  شماره 

صفحات  -

تاریخ انتشار 2011